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ON TURING DEGREES OF WALRASIAN MODELS AND A GENERAL 

IMPOSSIBILITY RESULT IN THE THEORY OF DECISION MAKING* 

by 

Alain A. Lewis 

0.  Introduction 

In von Neumann   [1928]  N-person  games  in normal  form were  character- 

ized as  triplets 

r = <N,{S.} . ^.I*.} . ,,> 

where    N    is a  finite  set of players.     The  sets    S.    are  finite  sets  for 

all     j  e N    and  the  functions     {<t>.}.  „    are  real-valued with 

(t).:    n S. ->• IR    for all     j  e  N.     In a more  general  setting,   one  can view 

the  game    T    abstractly as a  relational  structure and  the  theory of 

games is comprised of  several  types  of relational  structures  that are 

used to model  diverse kinds  of game-theoretic phenomena.     We  consider 

game-theoretic  structures  to be  of  the  form:  (// =  <A,R^,...,R  >    where 

A     is a nonempty  set and  the    R-'s are  relations  of  finite arity on    A 
J 

for all j = 1,...,n. 

*   This work was partially supported by Office of Naval Research Grant 
N000-14-86-K-0216 at the Institute for Mathematical Studies in the 
Social Sciences, Stanford University, Stanford, California and partially 
by National Science Foundation Grant DMS-84-104'56 at Cornell University. 
This paper is the text of an address to the Mathematical Sciences 
Research Institute at the University of California at Berkeley in 
January of 1986. 



-2- 

The use of relational structures of the algebraic kind of 

Ai  = <A,R ,...,R > is most likely unfamiliar to most readers in the 

theory of games.  However, it is not very difficult to show that the 

normal form games of von Neumann [1932] can be reexpressed as relational 

structures of the form /jf =  <A,R.,...,R >. Formally, we will state 
^ V 1 n 

this  simple  fact as  the  following result: 

Representation Lemma:     If    T = <N. {s .} .^j^, {<!).} .^jj>    is an N-person 

von Neumann game  in normal  form,   then    T    can be  reexpressed as a rela- 

tional  structure   ^(r)  =  <A(r),R^(r),R2(r)>    where    Dom(R^(r))  = A(r) 

for    i  = 1,2. 

Proof;     Suppose we are  given a  game  of  the  form 

r = <N,{s.} .  „,{<!'.} . „>.     We  can  then define  the  domain 

A(r)df:   = N X T,     where    T =  {t}     and    t = <t(l),...,t(n)>  =    n S  . 
JEN   ^ 

Next,   let    <R^(r),R   (r)>    be  given a pair of relations     <$,(|J>    such that 

Dom(i)  = Dom((i^)  = A(r)    with the  defining conditions  for all pairs 

(j,t)  e N X T = A(r)    given by 

$(j,t)   = *.    and    Dom(<t'.)  = t 
j J 

and 

^(j,t)   = S    =  t(j) 
J 

Then clearly,   the  structure    ^((F)  = <A(r),R^(r),R2(r)>    with 

R<,(r)   = 5    and    R„(r)   = cj^    recovers algebraically  the  structure 

r = <N,fsJ . „,h .] . »>    and hence   uCi'^)    is the desired reexpression 

of    r    as claimed. 
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From the representation lemma,   our use of generic relational 

structures  of the  form    (j(^= <A,R   ,...,R  >    merely serves  to provide us 

with a very convenient way  to code  the  components of an N-person game 

algebraically.     From well-known results of von Neumann/Morgenstern 

[1944]»  every N-person von Neumann game,   cooperative or non-cooperative, 

can be expressed in von Neumann's normal form    F = <N,{s.l       ,{<!>.}      >. 
0   JEN      j   aeN 

It follows trivially that every N-person game,   cooperative or noncoop- 

erative  can be expressed generically as a  relational  structure  of  the 

form   OX - <A,R,,...,R  >    and our use  of  this model-theoretic  framework 

is vindicated game-theoretically. 

We will assume Church's  theses and identify those  functions  that are 

computable with the recursive  functions;  and identify with every 

recursive  function    g:   IN ■>■ IN    a Turing Machine    TM       that realizes  the 

computations of    g    on    IN,   i.e.     TM_    reads  the  coded  inputs  of    Dom(g) 

and prints  the  coded output of    Rng(g)    after some  finite  time  period. 

In  Appendix  I,  we  discuss Turing machines  in a  formal way. 

Within this formalism,  we show that it is possible to obtain comput- 

able  representations  of any game-theoretic  structure ///    by approximat- 

ing the  various components of  the  model  with recursive  functions. 

Intuitively speaking a recursive  function    g:     IN > IN    is said to index 

a  recursive  presentation of a  game-theoretic  structure    /y/   if    k = 

Rng(g)    and if each relation    R.     is an effectively enumerated  subset of 

the appropriate product space  generated by powers of    g(lN),     i.e.   if 

R.     is m-ary  on    A,   then    dom(R.)     is an r.e.   subset of    gClN)". 
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Given an arbitrary recursive  presentation of a  ^me-theoretic  struc- 

ture y^       with index    g,   we ask whether or not (/(_o    °^" ^  recursively 

realized.    When we  say that QX.^    °^" ^ recursively realized we mean 

that the  task of//:''        can be executed by a Turing machine.     Associated 

with every model  'X a    i^  '^o"'®  \&B}^ of (/{^g*   i-e-   generate winning 

strategies,  equilibrium points,   optimal choices,   stable outcomes,   etc. 

Typically,   the  task of   U'i        is  the  form of a correspondence 

$:     Alt OL     ->■ Out .-JY 

$    acts a space  of alternatives  to a  space  of outcomes  for (^g«     Let 

degC/f  ) be  the Turing degree  of computational  complexity of  the  reali- 

zation of    $.     Then  (^„    i^ ^  recursively  realizable  game-theoretic 

structure if and only if    deg(^ ):   = degCgraphC'J'))    is recursive,   in 
O 

which case  the  task of (7"^ g    is  realizable by a Turing machine. 

By Rabin's theorem (Rabin  [1957])  there exists a recursively 

presented Gale-Stewart game    T      with no effectively computable winning 

strategy,  and  thus with no Turing realization  since    deg(r   )     is not 

recursive.     In Lewis  [l985a] we have  shown that single person g^mes 

against nature having the form of representable choice functions such 

that 

(A)   = {x e  A:     Vy G  A    X > y} 

for    >:     X^' ->  {1,0}    and    A e P(X)    for some compact convex set in 

X CIFP,     are  such that    deg(''. _)     is not recursive when    g    is an  index 

of a presentation of   /O,     that is recursive.     In the present paper,  we 
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show that if ^g.    is a recursive presentation of a non-trivial 

Walrasian model of general equilibrium,   then    deg((^'( )    Is not recur- 

sive.     It follows  that non-trivial Walrasian models  of general 

equilibrium are not realizable by Turing machines. 

The natural partial ordering associated with the Turing degrees of 

unsolvability gives a  usable  concept of rank  for the  computational  com- 

plexity of the  game-theoretic  structures  we  deal  with.     In terras of  the 

Turing degrees we rank the minimal Turing degrees of unsolvability 

associated with recursive  presentations of  the  following game-theoretic 

structures as a  measure  of  the  least extent to which the  game  is  to be 

considered non-effective. 

(l) Ly   '. Single  Player Choice  Functions 

(ii)       uiff' Walrasian Models of General Equilibrium 

(iii;   J j     : N-person Noncooperative Games in the sense of Nash. 

For    {/jf }.,      the class of recursive presentations of a fixed game 

theoretic structure /y(_    ,     let min(deg(//( ))  denote the set of 

minimal degrees for the class  {(yf  I . ^  • A degree d E P is minimal 

j 
for the class {/?/  } .^  iff 

J 

(1)     43' < 4deg(^f  j = dj and (ii) Vj < o) Ldeg[/)^ ) ^: dj. 

Specifically, our results show that for the complete r.e. set 

K = {e:  e E W }   ' 
e 

deg(K) = 0* < infimin(deg[(. jj, min(deg[(^ jj}. 
T g g 
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Every pure exchange Walrasian model  is comprised of a set of single- 

player choice  fxjinction  games,  and is equivalent in  task  to an N-person 

non-cooperative  game  in the  sense  of Nash.     As a  corollary,  we  have  the 

following therefore. 

0-   < minfdeg^L)). 

These classification results were announced in an abstract that 

appeared in The Recursive Function Newsletter,  No.   33,  July 19B5 

entitled:     "Some  Turing Degrees of Complexity of Certain Game-Theoretic 

Structures".     The  paper itself is a  generalization and extension of 

results first obtained  in Lewis   [1985a] and   ri985b] where Turing 

reducibilities were  introduced to  determine  the  extent to which 

recursively  representable  choice  functions  can be effectively realized. 

The paper is  organized in the  following way.     Section 1   is a 

preliminaries section and covers the basic definitions and concepts used 

from the  theory of recursive  functions and  the  theory of Turing degrees 

of unsolvability.    We fix the notation of the paper in this  section and 

give  the definitions for a recursive presentation of a relational struc- 

ture and its Turing degree.     In section  2,  we  deal with  the  specific 

structure associated with single-person choice function games against 

nature.     In  this  specific instance we  obtain bounds  for  the  minimal 

Turing degree  of unsolvability   (i.e.  + O)  of recursive presentations  of 

the model  of the  game.     The main theorem is Theorem 2.2,   the  proof of 

which is a  Kleene-Post reduction-style argument.     In section 2.  at the 

end,  we briefly  indicate  the application of  the  result on single-person 
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choice function games to the degrees of Walrasian models of general 

equilibrium and N-person non-cooperative games in the sense of Nash.     In 

section 3 we  generalize  the  impossibility result of Kramer  [1974]  and 

obtain  the  result of Kramer as a  special  instance  of Theorem 2.2. 

Persons having some acquaintence with classical recursion theory as 

presented in Rogers   [1967]  or Scare   [1986]  may skip the first section 

and proceed directly  to  sections 2 and 3 of  the paper.     Two Appendices 

are provided at the end of  the  paper.     The  first Appendix  gives a  formal 

description of Turing machines and finite state machines,  while  the 

second Appendix presents results that characterize recursive metric 

spaces in the sense of Moschovakis   [1965]. 

1.       Preliminaries and Notation  from Recursion Theory. 

The notation and terminology  from recursion theory  that we use  is 

standard and can be found in several places,   e.g.  Lerman  [1983],  Rogers 

[1967],  Shoenfield  [1971],  Simpson  [1977]  or Scare   [1986]. 

Informally, a number theoretic function 

f:  (i) ->■ (0 

where u) = {o,1,2,...n...}  is the first infinite ordinal, is said to be 

recursive if there is a programme for a Turing machine such that follow- 

ing the instructions of the programme, the machine can compute f(n) 

for each input new.  This mechanistic model for the recursive func- 

tions was developed by Turing [1936]. 
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Let      2    be  the  set of all  fionctions    f:     o) •>  {o,l}    and  let      co    be 

the  set of all number-theoretic  functions    f:    w ->• w.     If    f    and    g 

are elements  of       2,     we  let    f ® g    denote  the unique  function    he    2 

such  that for all    new h(2n)  = f(n)    and    h(2n + 1)   = g(n).     Identify- 

ing sets in    «    with their characteristic functions,   the notation 

A © B    gives a set    C    whose chairacteristic  function is    X^ = X,  ® Xr,- 

Definition 1.1:    A function    f e    o)    is recursive  in a function 

g e    w    (or    f    is Turing reducible  to    g)     if  there  is an algorithm 

that computes    f(n)     from the  input    n    using an oracle  for  the  function 

g    for all    n e  o).     If     f e    to    is Turing reducible  to    g e    w    then we 

write    f <„ g    to indicate  this. 

Assume a  fixed Gbdel numbering of the algorithms used  to  compute  the 

recursive  functions     H   f   .  • 
e  e<oj 

Definition 1.2.    For every function    f e  2    define the function 

* 10 
f    e     2    by  the  rule: . 

f  (e)  = 

f f 
1   if    <}i  (e)-!-     (i.e.    <()      halts on    e) 

e e 

f f 
0 if    <t)   (e)^'     (i.e.     ^      diverges on    e) 

f th where    (t)      is the    e        recursive  function using    f    as an oracle, 
e 

The  following proposition  is not difficult to prove,  and  the  details 

can be found in Rogers   [196?]. 
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Proposition  1.1 

(i) f <j f 

(il) (f  <^  g    and    g^<    h)   =>  f^<    h 

(iii) f © g <^  h    iff    f <^  h    and    g <^ h 

(iv) f <^ f      and    f ^ f 

(v) (f <^ g)   =>  f* <^ g*. 

We  define  the  set of degrees  of tinsolvability using the  following 

equivalence relation 

Definition 1.3:     If    f    and    g    are both in      to    define  the  relation 

f =^ g    as 

f =^ g    df:   = f <^ g    and    g <^ f. 

Definition 1.4:  For a fixed f e o).  The degree of unsolvability 

of f, written f is the set 

f = {g e  w:  g =^ f}. 

We  let    V    denote  the set    {f:     few}    and often use    deg(f)    for    f. 

By convention,   the  degree  of a  set    A C co    is    deg(f)     where     f e    2 

and    f = X,. A 

Definition  1.5:     Let    a  = deg(f)    and    b = deg(g).     The  relation     < 

on    V    is  defined by  the  rule: 

a  < b    iff    f <     g. 
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The binary operator    U    on    p    is  defined by  the  rule: 

a U b df:  = deg(f © g). 

The unary  operator    j:   V   -*■   V   is called  the  jump operator and is 

defined by the rule: 

j(a)   = a'   df:   = deg(f  )     if     f e "2    and    deg(f)   = a. 

We let 0 be a distinguished element of V    defined by 

0 = deg(^.n • 0).  Since no recursive function requires an oracle to be 

computed and thus  f <  (Xn • O)  if  f is recursive,  0  is the degree 

of recursive functions. 

Proposition 1.2; 

(i)     The cardinality of V    is Z-* ''. 

(ii)     V    is partially ordered by the relation  <• 

(lli)   Subsets of V   have upper bounds under < if and only if 

the subset is bounded. 

(iv)    0 is the least element of V. 

(v)     a U b in the least upper bound of a and b. 

(vi)    S ^ 3,'  ^°^ ^^^    a e    V. 

(vii)   a < 5 => £' *^ 5'' 
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If (j) e CO and ^  (x) converges then we write (j) (x)')-; if not, 
e e e 

we write <!> (x)t.  Let i't> } ^  be an acceptable listing of the partial 

recursive functions on o).  A function <|)  is partially recursive if 
e 

there is an algorithm to compute its values and if Dom((t) ) C w,  i.e., 

(t>  is not necessarily total. e ^ 

Definition  1.6;     If    S Cw    then    S    is R.E.   or recursively enumer- 

able  if either    S = 0    or S = Rng(<|)   1     for  some  partial  recursive 
e 

function    <J)     •  S     is R.E.   in a  degree    a     if    S = 0    or    S  = Rng((|)   ) 
e ~ e 

for  some  partial    a-recursive     function    <!>  ,     i.e.     deg(<t)   J   < a,     and a ~ e e        ~ 

degree    b    is R.E.   in    a    if    b = deg(S)    and    S    is R.E.   in    a,     where 

deg(S)  = deg(Xg)     if    S    is a set. 

For any degree    a,  a'   =  j(a)     is  the  largest degree   that is R.E.   in 

a.     Jumps of degrees are important for determining the complexity of 

relatively  recursive  fxinctions. 

Definition  1.7:     A function    f E    co    is  limit recursive  if  there  is 

a  recursive  function    f: co x oo -> w    such that    f(m)   = lim f(m,n)     for 

all    m e u).     If a  = deg(f),     then    a  <  0'     if and only  if    f    is  limit 

recursive. 

The  degree 0'     is  significant for the  fact that if    S 9 co    is an 

R.E.   set,   then deg(S)  < 0'   •  0'     is also  the  degree  of  the  set 

K =  {e:     (})   (e) + }. 
e 

If     A 9 CO    is any  set,   then  the  jump of    A    can be expressed  in terms  of 

K    relativized to    A,  i.e. 
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A'   = r  =  {e:   (t)g(e)4-} 

A A where    ^      is  the eth A-partially recursive  function,   i.e.,     (J)      is the 
e e 

e        partial recursive  function using the set    A    as an oracle. 

The  jump operation can be  iterated. 

Definition 1.8;     If    a  = deg(f)     for some     f e    2,     then 

a^"^  = deg(f^"^)    for    f^°^  = f    and    f^"^^^  = (f^"V    inductively for 

(0) j       (n+1)       r   (n)^,        .r   (n)^ any    new.     Thus,     a = a    and    a =  [a       j'   =  o[a       J.     In par- 

ticular,     iio^^h   = [O^^h   = 0"    and    a(0)  = 0^''^ = 0'. 

Starting with    0     one  can form  the  chain  of  jumps; 

0  <  0'   <  0"  <  0'"  <   •••   <   0 <  0 ^   <   •••   . 

Let    <x,y>    be  the value  of the pairing function   (Rogers   [196?]  p. 

64) 

1   c  2       „ 2 
X (x,y)   = -x (x    + 2xy + y    + 3x + y). 

The  function    i    gives a bijection  from    u) x w    to    oo. 

The  jump  function can be  iterated into  the  transfinite as  follows. 

Definition 1.9;    The  set 

0^"^  =  {<x,y>;     xe  0^^^} 

is  termed  the    to-jump    of 0 or the    u)-completion    of 0. 

Obviously,     0 ^^  <  0 ^^     for any    new,    and    0^"^  ^^ 0 for any 

n e 0).     Clearly,     0 is not an arithmetic degree. 
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(2) Finally,   the degree of    0^   '    is important for the fact that 
(2) 

0 = deg(K')    and the  fact that the  degrees of  the  sets: 

(a)     {e:   ^      is total on    oj}     (b)     {e:    Rng[<l)   )    is infinite}    and 
e e 

(c)     {e:   |Rng((t)  ) |   < "}     are also equivalent to    deg(K')  = 0^       = 0". 

The degrees    0'     and    0"    figure prominently in assessing the 

complexity of game-theoretic  structures  in later sections. 

Further results on the structure of    V    as an upper semi-lattice 

with least element    0    can be  found in the  comprehensive  study of Lerman 

[1983]   or the shorter set of lectures by Shore   [1982].    Such results are 

of considerable mathematical interest,   but of little use in the present 

paper. 

We need to characterize arithematical  sets in    u)    and relations on 

By elementary number theory we mean the  first-order  theory of Peano 

Arithmetic with the structure   (cf.  Rogers  [196?]  Ch.   14) 

X^ =   <(JO, + ,X,0,1>   . 

Definition 1.10;     A relation    R C   co    for  some    n e  co (n  > O)     is 

said to be arithmetic  if    R    is explicitly definable by a formula    $    of 

elementary number  theory.     If    R    is arithmetic  then    R    has  the  expres- 

sion 

^<^1 V=     ^1y1 O^yV-'^m'^'-'-'V ^ ^]^ 
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where    Q.,... ,Q      are  quantifiers of  the  form    ^    or    V    and where 
1 n 

R9        (JJ    is a recursive relation,  and where     'R(y. ,...,x  J'     is abbrev- 

iated by     '<y.,...,x  > e  R'. 

The  following is  obvious. 

Proposition 1.4;     If    A 9 w,     then    A    is arithmetic  iff  there  is a 
-_,-1 

recursive relation    RC        w    for some    new    such that 

A = {x:    Q.  .,...,Q     R(y^,...»y »x)} 1y1 nyn      1 n 

for some (possibly empty) choice of quantifiers Q^,...,Q^. 

Given a choice of quantifiers Q>|,...,Q  and some recursive R we 

say that 

Sy1"-V^^^1'--"^n'^^ 

is a predicate form and that it expresses the set A. 

Definition 1.11:  Let > df: = the collection of all sets in w 
  n 

expressible by a predicate  form with    n    alternating quantifiers of 

which the  first is existential,  and  let    11    df:   =    the  collection of all 
n 

sets in w expressibly by a predicate form with n alternating 

PO   0 
quantifiers of which the first is universal. Note that 2,^ = 11^ df: = 

the recursive subsets of w. 

The proofs of the assertions in the next proposition can be found in 

Rogers [1967] Ch. 14. 
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Proposltion 1.6; 

(i) ke  f    iff    A e U^ 
n n 

(ii)        Z   ^2.^-,.n9),    .,   I   bn    .   and   n   cn    .. '^n      '"n+l n      '"n+l   '     ^n        n+1 n        n+1 

(ill) 1°   $n°    and    n° d f    for all    n  •  0 n  ^  n n -r   n 

(v) X° u n°     X°     n nV 
^n        n      ^n+1 n+1 

The    y      and    II      classes  form a hierarchy by Proposition 1.6(iii) 
n n 

and it is  referred  to as  the Kleene-Mostowski  Arithmetic Hierarchy. 

There are  important relationships between  levels in the Kleene- 

Mostowski Hierarchy and the Turing degrees  of unsolvability,     V  .     Prop- 

osition  1.7  summarizes  the  important ones.     Again,   proofs may be  found 

in Rogers   [196?]   Ch.   14. 

Proposition 1.7; 

(i) A    Is r.e.   In    0<"'       Iff    A z J°^^     Iff    deg(A)  < o'"*'". 

(iii)       A    is arithmetic  iff    A e  T    U H      for some    new    iff 
'^n   n 

A < 0^""^  for some new. 

In terms of the hierarchy, if a set A ^ (o is such that 

deg(A) = a < b = deg(B)  for some other set B 9 w,  then A < B but 

B ^; A and A is to be considered less complex than B in terms of 
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Turing equivalences.    Thus to determine  the relative complexity of a set 

A C CO    it suffices to determine the parity or non-parity of    deg(A) 

with a known degree  of     V ,   say    0'     or    0",     and  this  is roughly  the 

kind of procedure we will employ  in the  paper to rank  the  complexity of 

structures. 

We will conclude the preliminaries section with the following set of 

definitions  for the  recursively presented structures in terms of Turing 

degrees.     All  of the  required material  from recursion  theory for  this 

paper has been covered  thus far in this  section. 

In this  paper we  take a model-theoretic approach to game-theoretic 

structures and let game-theoretic structures have the form: 

^ = <A,R^,...,R^> 

where    A    is an arithmetic set,   so that    deg(A)  < 0       ,    and each rela- 

tion    R^     is  finitary on    A    for     j  = 1,...,n. 

Definition  1.12:     Let = <A,R.,...,R  >    be a  game-theoretic 
._^_^—__—^—^-^ 1 T^ 

structure.     A function    g e    oo    is  said to index   (y/    if 

AC Rng(g)   =  {j  e  u):     ^i  e  a)[g(i)   = a]}. 

If   (/'/ is a structure with index    g,   then we write (7^ g    *° indicate 

this and say that (/(_ is indexed by    g. 

Definition 1.13;     Let uf g    be an indexed game-theoretic  structure. 

The  degree  of presentation of (/i „    is denoted by    Ti((/(^    )    and is 

defined as 
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■ f'i 

n n 
Df(7f )df:   = deg(A    ®    Dom(R.)). 

n 
The  symbol       ®       denotes  the  iterated  join  over     {R.,...,R   }     and note 

j=1 

that in general we allow the    R.     to be partial on    A    so that 
J 

Dom(R.) * A may occur for some j = 1,...,n. 

Definition 1.14:  If UL? ^^  ®" indexed game-the ore tic structure. 

Then (y^   is recursively presented if 

D(^ ) < deg(B)  -, 

for    B    some    R.S.   set.     Then if ^        is recursively presented, 

^iffCj  < 0',     since    deg(B)  < 0'     for any R.E.   set. 

We will make use  of  the distinction  that the  degree  of presentation 

of a game-theoretic model is different from the degree of the model. 

For the  latter concept,   we use  the  fact that associated with every game- 

theoretic model  is  some  task of  the  model,   i.e.   generate winning 

strategies,   equilibrium points,   optimal or  "best"  choice,   or outcomes 

that are stable in some sense. 

Let    Alt(^ )    be a space of alternatives for an indexed game- 

theoretic structure,  and let    Outi(y[)    be a space of outcomes of (j\~. 

Typically,   the  task of /// „    is  in the  form of a correspondence: 
O 

$:     Alt(^  )  ^ Out(^J. 
8 8 

Implicitly we will assume that both k\\.\/)i^   ) and Out((|)^ ) are 

arithmetically presented in the form of a /,-class of objects.  Thus, 

we can obtain R.E. indices for both Alt(^ ) and Q\xt{0i^  ). 
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Definition 1.13:     If  ^l e    ^^ ^ game-theoretic  structure with index 

g,     then the  degree  of  the  structure   ^ „    is denoted by    deg[/yt, J    and 
o g 

is  defined as 

deg[/^  )  df:   = deg(graph)($)). 

The  distinction between  the  degree  of presentation  of a  structure 

^ _    and  the Turing degree  of  the  realization of  the  task associated 

with the  structure   ^       is a necessary distinction.     The  specific 

structrures we  treat subsequently are  such that    ^((^   J   < 0'     t>ut in 

general we will  have    deg(^?^   ]  * 0.     The  two notions of degree  that are 

used here refer to different forms of complexity. 

2.       Single-Person Choice Function Games. 

In this section we are concerned with certain single-player games 

against  "nature".     There  is  only one  player and  "nature"  is represented 

by a  topological  space  of alternatives.     Given a particular state  of 

nature,   i.e.  a  configuration of  subsets of alternatives,   the  player does 

the   "best"  that he  can according  to  some  rule  of preference.     Typically, 

a  model  of such a  game  is a  pair    <F,/ >    where    F    is a  subfamily of 

subsets of    IFf^    and   /       is a  sub-invariant set-function;   that is  for 

all    A e F,    MA)  CA. 

To obtain an effective presentation of such a game we will introduce 

the notion a recursive metric space and consider recursive subsets, Fy^, 

of compact subspaces for a specific recursive metric space for IFr. We 

then consider the degree of an effectively representatble choice 
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function   /    :     ^R ^ F  .    Since every recursive metric space  is an 

R-space  in the  sense  of Lachlan  [I964]   the  choice  functions we  construct 

can be alternatively characterized as representable Banach-Mazur 

operators on    R-spaces.     Our construction uses  the  specific  framework 

for recursive metric spaces due in origin to the work of Moschovakis 

[1964].    A different approach to effectivizing the Euclidean space    IR" 

is the topological framework of Kalantrai and Retzlaff  [1979] which is 

more  general  in nature. 

The results of this section are proved in Lewis   [1985a] and  [l985b]. 

Definition 2.1;    Let    r:    o) ^ Q    where 

r(x)  =  (-l)^^^^''^num(x)/den(x) 

for sign(x), num(x) and den(x) primitive recursive values.  A real 

number a E IR is a recursive real number if there exists a total 

recursive function f: w -»• w such that 

(i)     Vx, y e a)(|r(f(x)) - r(f(x + y))! < 2"'' 

and 

(ii)    a = lim r(f(x)). 

Definition 2.2;     If    a    is a recursive real number determined by a 

total  recursive  function    f:    u ->• w    with Godel number    n(f),   then we 

term    n(f)    an R-index of    a    and denote    a    as    a   ...    The  set    N(IR) 
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of natural numbers that are    R-indices    of recursive  real numbers  is 

characterized as 

n(f)  e N(IR)    iff    Vx h T  (n(f),x,z)   •  A • 

Vx Vy Vz Vt [T   (n(f),x,z)   •  A  • 

T^(n(f),x  + y,t)  => 

|r(U(z))  - r(U(t))|   <  2'^] 

The functions    T-i    and    U    occur in Kleene's Normal Form Theorem. 

Each element    n(f)  e  N(IR)     determines a recursive  real    a   /   s,     but 

the  correspondence  is not one-one  for  the  reason  that different Gijdel 

numbers may determine  the same  function,  and different functions iiHy 

determine  the  same  recursive  real.     Taking this into consideration,  we 

reduce    N(IR)     modulo  the equivalence  relation 

f ~ g iff    a    = a  . 

The ordered pair <N(IR), ~>    is called a notation system for the set 

of recursive real numbers.    The extension to a notation system for the 

recursive  elements of    IFP(n  > O)     is straightforward:     let 

N (IFP)  = {<n(f^),...,n(f^)>:     n(f^) n(fj   e N(IR)} 

n-1 n(f  ) 
for <n(f^),...,n(f^)>df: =  n P. ^"^^  where (p^,... ,P^_^}  is the 

set of n initial prime numbers. The equivalence relation ~  on 
n 

N(IR) is defined as 
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<n(f)> -^ <n(g)>    iff    {[<n(f)>,   <n(g)> e N(IFP)] 

.  A  . Vi  < n[n(f^) ~ n(gj]}. 

Definition 2.3:    A recursive metric space in the sense of 

Moschovakis   [I964]  is an abstract notation  system    <T,~>    together with 

a binary recursive operator    D:     T ->■ TR    such that: 

(i) Va,  p  e T[D(a,p)  = 0    iff    (a = p)] 

(ii) Va,   p  e T[D(a,p)  = D(p,a)] 

(iii) Va,  p, Y  P T[D(a,Y)  < D(a,p) + D(P,Y)]. 

The convention of Moschovakis  [I964]  is to treat the equivalence 

classes in    <T,~>    as points in the metric space.    The operator    D    is 

obtained by extending the appropriate partial function on    co    to the 

equivalence classes of    <T,~>    in the usual way. 

Consider now  the notation systems    <N(!m ,~>    and    <N(lFr,~ >. 
n 

We construct the recursive metric spaces 

M(IR) = «N(lR),~>,Djp> 

and 

M(IFP) = «N(lFf),~ >,D  „> 
n  IR" 

by taking the operators T)-^   and D__^ to be defined as 

and 

IR" 

DiR df: = |o| 

D 
IRn df: = [ I    (|o|j)2]l/2. 
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It can be shown that the operators Tij^   and D   are in fact 

recursive on w with restrictions partially recursive on N(IR) and 

N(IFP); and the recursive metric spaces M(TR) and M(IFP)  can be given 

a concrete representation by topological means (cf. Lewis [l985al and 

the discussion of Appendix II for details).  Specifically, the 

rationals Q are each recursive real numbers and are dense in IR. One 

first forms the recursive metric spaces OM(IR) and QMCIFT) 

consisting of the rational elements only and then takes the recursive 

completion of both to obtain the spaces M(IR) and M(IR") 

respectively. 

Definition 2.4: Let X be a compact, convex subset of IR (n > O). 

Denote by R(X) that subset of the recursive metric space MCITP) 

given by 

R(X) = rcl{a e QM(nf):  ^x e X • A • t(x) e a} 

for    t:     IFP ■*■ Q'^(IR)    the function that associates    n-tuples of real 

numbers with Gbdel numbers of a notation derived from a fixed 

approximation by members of    Q'^    and where    rcl    denotes the recursive 

closure  in the natural  topology induced by the metric on    QM(IFP).     Let 

IFp    be  the class of recursive subsets of    R(X),   i.e. 

IFrj =  {A e  P(R(X))    and    A    is recursive}. 

We term the pair    <R(X),  IFJ^>    a recursive  space of alternatives in 

M(lff).     A set-function   /  :     W^ ■* P(R(X))     such that 
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VA e  IFR[ KA) C  A] 

is  termed a recursive  choice on    <R(X),IFp>. 

Definition  2.3;     If     <R(X),IFHJ>    is a  recursive  space  of alterna- 

tives in    M(llf),  a recursive choice     (.    on    <R(X),IF^>    is recursively 

rational  if the  following two  items exist: 

(1) >:       R(X)  X R(X)  ^   {0,1} 

(2) f:       R(X)  > cj    such that: 

(a) f    is potentially partially recursive 

(b) Va,  p  e R(X)  [a > p => f(a)  > f(p)] 

(c) VA e  IFR[/  (A)  =  {a:     Vp   E A(f(a)  >  f(p))}. 

A recursive choice on    <R(X),IFJ^>    is recursively rational  if the 

action of     (      on    IFo    can be explained in terms of a binary relation 

on    R(X)     such  that the  relaton has a  computable  representation.     The 

requirement that the  function    f    be p.p.r.   (potentially partial  recur- 

sive)  is the weakest restriction possible,   since    f    is not required to 

be  recursive,   i.e.     f    is    p.p.r.     if    for  some     g e    oj    partial  recur- 

sive,     gfDomCf)   = f. 

Definition 2.6: Let <R(X) ,IF|:^> be a recursive space of altema- 

tives and let / be a recursive choice on <R(X),IFp>. If g is an 

index  for a    L-subfamily     {iFp}^ of  IFj^,   then we  say  that 
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n 
= {    TIIFD  } ..      is a sinpfle-player choice-function game on 

<R(X),IF|^>    indexed by    g. 

Definition 2.7:    Let /    „    be an indexed single-player choice- 

g     ^" function game  on a recursive  space of alternatives  <R(X),IFp>.    / 

recursively presentable  if and only  if    (.^[w^] ^ is a Banach-Mazur 

operator,   i.e.   given the index    g    for    Dom(r, g)  = {lF^_}   ^^  ,     there  is 

an  index    h e '^w    that makes    Rng(/     )   =  {^R.)}^<^    ^    ^^-subfamily    of 

IFR. 

The next theorem shows that in order to get a recursively presented 

single person choice function game on <R(X),IF^ >, it is sufficient to 

let       /    o-    l^e  recursively rational. 

Theorem 2.1:     If    /       is recursively rational  on  <R(X),IFp>    and if 

/' = /    rllFn   I   .      is an indexed single-player choice-function game, 

then  /^ rr    is Banach-Mazur and thus recursively presentable, 
g 

Proof;     We use  the  index    g    for     {iFp}.,      and the  lemma below, 

the proof for which is not difficult and therefore is omitted. 

Lemma  2.1.1t    If     /     is recursively rational on <R(X),IFp>,     then 

for any    A    in IF^,    /^ (A)  e IFj^. 

Definition 2.8:     Let   /  _    be an indexed recursively presentable 

single-player choice-function game with    Dom(/^   )   =  {XF^,}.^^    indexed 

by    g    and    Rng(/^   )   = 1 Lgll^R .)h<u    indexed by    h.    The graph of/^ 

is  the  set of pairs     {<IFR.,   Lg^^R.^^^jeN    ^" *'^®  ^P^°® 
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P(R(X))  X P(R(X))     indexed by    f = g x h.    We will  say that graph 

[(     )    has full  domain if for some    k e  co    and all  pairs    i *  j  > k, y,g   

It follows that a full domain in    IFpj    is not a null sequence of 

sets and contains infinitely many distinct elements that aire enumerated 

effectively. 

We have  shown elsewhere that any non-trivial recursively presented 

single-person choice-function game with full domain cannot have a recur- 

sive graph  (Lewis   [l985a]  Theorem 3.1).     In fact more is true.     Such 

games do not even have an R.E.   graph.    We  show this in a  theorem that 

places a lower bound on    deg(graph(/  „))    at    0"     (cf.   Lewis   [l985b]). 

For  the proof of  the  first theorem,  we use a reduction-type  of argument 

for determining the  degree  of bounded sets of recursive  real numbers  due 

in origin to N.Z.  Shapiro  [1956]. 

Theorem 2.2;    Let <R(X),IFJ^>    be a recursive  space of alternatives 

and let    /      be a non-trivial recursively rational choice fimction. 

If    g    is a    ),.-index    of some  full  domain     {IRD   ]..   ,     then 

deg(graph(/^g))  = deg(graph(^ fflFp}^     ))     is bounded weakly below by 

0",     i.e.     0"  < deg(graph(/^   )). 

Proof!     (abbreviated)  The  first step  in the proof  is  to reduce  the 

notation for    M(l[f^)     to a  sub-notaton  for the  recursive  reals. 
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Lemma 2.2.1; For an appropriate choice of Gbdel numbering, there 

exists a notation IN(IR) of R-indices for the recursive real numbers 

and an injective mapping    y    such that    Y(   (IN(H^)) C IN(IR). 

The effect of the  lemma  is  that we may consider n-tuples  of R- 

indices in    M(lpP)    as    R-indices in the notation    IN(IR)    of the metric 

space:     T1(IR)   = <(IN'^(IR),  ~£HJ(IR)) .1^IR>.     Since    y    is  injective,   the  set 

R(X)  in    M(IF^)    and members in the class    IF^    have well-define images 

in    M  (IR),  e.g.   for any    IF^  e IFj^    we  have  its  image  in    M  (IR)     given 

by 

Y(lFj)   =  {a  e M(IR):     ^p   e IF^   9M(IR").-.  Y(P)   = a} 

Recall  that a relation  is potentially partially    E     (or    IT   1     if it 
n n 

has an extension which  is partially    E     (or    IT   1.     The key result used 

in  the proof  is  the Shapiro Extension Lemma. 

Lemma 2.2.2;     (Shapiro  [1956])    Let      U   P(lM^)    denote  the set of 
j<w 

all finitary relations on    IN   and assume  that    F e      U   p(lN^)    is 
j<CJ 

potentially partially E (or 11 ). Then F is the restriction of some 

$ e  .y P(IN^) such that $ is E° (or iP). 
j<w n ^    n-^ 

This significance of the Shapiro Extension Lemma is that it allows 

the extension of the taxonomy of complexity provided by the Kleen- 

Mostowski Hierarchy to the domain of the partial recursive predicates. 
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Lemma 2.2.3:    The image,  under the mapping    y,     of the co-domain of 

a non-trivial  recursive  rational  choice with full  domain is contained 

within a bounded interval of    M(IR). 

Since bounded intervals in    M(IR)    are effectively indicated in the 

sense of Shapiro  [1956],   if the assumption that the co-domain of a 

recursive rational choice function with full domain is itself recursive 

a contradiction is reached using Lemma 2.2.2 since  the characteristic 

function of finitely many recursive reals within an effectively 

indicated interval    M(IR)    cannot be extended to be recursive,  and 

therefore cannot be the restriction of any recursive function.     Since 

the co-domain of a recursive rational choice fuinction is a projection of 

the  graph of such a function  the  theorem follows by  corollary XI of 

Rogers  [1967]  p.   66,  and Theorems 11.15 and II.5 of Shapiro   [1956].   D 

Corollary 2.3:    Let    <R(X),IFpj>    be a recursive  space of 

alternatives and let  (^      be a non-trivial recursively rational choice 

function.     If    g    is a    K-index    of  some  full  domain     {iFj^   }       ,     then 

deg(graph(^ g))    is not R.E. 

Proof:     If    A    is R.E.,   then    deg(A)  <  0'. D 

Theorem 2.2 and Corollary 2.3 have a very useful application  to 

assessing the degrees of Walrasian models of general equilibrium.    We 

give a brief sketch of this application. 

Definition 2.9:    A Walrasian model of general equilibrium is a  two- 

sorted  structure: 



-28- 

^  = <IR(-n)A   ,   I.J.   ((X,,?,)},,,,((Y..T,.)}.^J>. 

It is assumed that    S.    is the dimension of the commodity space and 

the structure has  two sorts of variables:     I,   of cardinality    m    for 

consumers,  and    J,  of cardinality    n    for producers.    The pairs 

l(x.,C   (p,w)j} and     {[Y. ,TI . (p)} . represent the feasible  space  of 
1    1 lEI J     3 jej 

alternatives along with the agent's criterion function for both sorts. 

The  sets     |X.},   ^    are assumed to be  compact and convex in    IFP.     The 
1 lel 

reader who  is  interested  in more  detail  on  these  matters  is  referred  to 

the treatise of Debreu  [1959]. 

Given a  structure  of  the  form {// ,     it is clear how one  obtains 

recursive  presentations.     First,   one  constructs a  recursive  metric  space 

for    IR^'"'^"^J!.,  MdR^™"^"^!)    and  then next allows    R(XJ)    and    R(Y.)     to 

be the appropriate image in    M(lR^''' "'A)     for each    i e I    and each 

j  e J,     respectively.     The response  functions  for each sort of agent are 

choice  functions and so to obtain recursive presentations we use  the 

earlier framework and select    I -indexed    sequences of recursive sets in 

R(X,. )    and    R(Y.),     {ipf  }^,      and     {G^  ]^,      and note  that from Debreu 

[1959]   the real-valued functions that are order-preserving homorphisms 

of preference  structures on    X.     and    Y.     can be  taken to be  recursive 
-I- J 

on    R(X.)     and    R(Y.)     for all     i  E I    and    j  £  J. 

The  task of a Walrasian model  of general equilibrium is  to generate 

prices    p e IR    such the choices made  from the correspondences    C.(p.w) 

and    n^(p)    are  optimal  in terms  of order-preserving homomorphisms of 

the preference structures on    X.    and    Y^    for all    i £ I    and    j  £ J. 
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Clearly,   this task can be no less in complexity for a recursively 

presented    Qi   with    )   -indices    for sequences of recursive  sets  in 

R(X.)    and    R(Y.)    for all    i e I    and    j e J,     than the complexity of 

realizing the  single-person choice  function games associated with the 

two sorts of agents.     And so,   making the obvious applications of Theorem 

2.2 we have the straightforward result below. 

Let    lEi    and    G^    denote  the class of recursive  subsets of    R(XJ^) 

and    R(Yj)     in    M(R    "*""     )     respectively,   for all    i  e  I    and    j  e J. 

Theorem 2.4?     Let    M(IR )     be a  recursive  metric  space and let 

(Jl ^.     be a recursively presented model of Walrasian general equilibrium 
^ g'^h 

such that    g:     I x w ->■ O)    and    h:     J x  u) •* o)    provide uniform 

),.-indices    for full  sequences of recursive  subsets     (^ p   }+<-   — R(X.) 

and     {G^   }, .   C R(Y.)     for all    i e  I    and    j  e J    and such that the R    t<u        ^   y "^ 

\ 11. 
choice functions   r and   f^   ^    are non-trivial and recursively 

rational  for all    i e I    and    j e J    on    IFL    and    G^    respectively. 
K R 

Prooft  It is possible to formalize the remarks immediately 

preceding the statement of the theorem into the following inequality: 

Then _0" < deg(^ ^^) and thus deg(^^ ) is not R.E. 

deg(^xj > -^P {{deg(^^^)},^,,{deg(/^''^).^j}} > 0"   D 

From Arrow and Debreu  [1954] Walrasian models of general equilibrium 

are strategically equivalent to N-person non-cooperative games in the 



-30- 

sense of Nash [1950]. Obviously, any two recursive presentations of 

such structures would bl-equlvalent In terms of the Turing degree of 

complexity of realizing their tasks. 

Definition 2.10;     An N-person non-cooperative  game  in the  sense  of 

Nash is a  structure 

^-'"••VaeN-f^a'ier 

where N is a finite nonempty set of players, and each S. is an r - 1 
J 

dimensional simplex for all  j e N, and where the functions  {<!'.}. ^ 

are such that 

n 
(t).:  n S. -► IR . 
3   j=1 ' 

Suitable recursive presentations for structures of the form can be 

N_ 
constructed by first obtaining a recursive metric space for IR   and 

then taking the functions {<l>.j. „ to be uniformly recursive in j on 

rO 
2,^-indexed enumerations in the product space 

R(S, ) X ... X R(S. ) 

where R(S.) is the image of S. in the recursive metric space for 

^r IR ^. 

Theorem 2.5;    Let    M(lR r)    be a recursive metric space and let ^j^ 

be a recursively presented    N-person non-cooperative game  such that 

g:     N X w -♦■ w    is a uniform    2,>|-index    for sequences of recursive 
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subsets    {IFM . .    C R(s.)    and such that    {iF^  } . ,      is full for all 

j  e N.     If  Xj^       is nontrivial,   then    0"  <  degfTl). 

Proof;     This  theorem follows  from Theorem 4.4 and the  fact that   ' " 

is strategically equivalent to some recursively presented Walrasian 

model  of general equilibrium. 

The reader is advised to consult and Arrow and Debreu  [1954]  for the 

details of the strategic equivalence of maximizing behavior for the 

participants in Walrasian game-theoretic structures and Nash N-person 

noncooperative  game-theoretic  structures.     The  structures  that 

generalize the Nash N-person noncooperative ^me-theoretic structures  to 

Walrasian models and provide  strategic equivalence  in  this  setting are 

the abstract economies of the form: 

(^>v = ^^'"i V^i VN^^^ VS^> 

where the U^ are subsets of IFP (n > 1) and an equilibrium point for the 
sjj ^ ^ JC. ^ 

game associated with^JYJ.(V)     is a point    a     = <a. ,...,a^^> e    IT    U. 9   IFP^ 

such  that     (i)    a.   e  A.fa.l     for all    i  = 1,...,v    and 
1 11^ 

(ii)    f.(a.,a.)   =      max        f.(a.,a.)    for all i = 1,...,v.    The notatic 

a.eA.[a.) 
^^Jt i J. J. y « »# \£_ u 

a.     denotes  the  deleted vector    a^   =  <a a.   ..a.   ^,... ,a  >.     Given 
1 i i'       '   1-1'  1+1'       '  V 

strategic equivalence  for structures  of  the  form 1^(V)    and Walrasian 

models,   the  theorem is obvious when T^(V)     is  given a  suitable  recur- 

sive presentation since  the class of structures of the form "A . (V) 

contains  the normal-form Nash N-person noncooperative  structures 

^^1= <N,{s^}^^jj,{(t)^}^^jj>    as a subclass. 
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3.  A General Impossibility Result 

In this section, we show that the impossibility result of Kramer 

[1974] is a special instance of Theorem 2.2. 

The following definitions will be required: 

Definition 3.1;  By an alphabet one means an ordered finite set of 

primitive symbols, denoted as K. 

Definition 3.2;  By a string is meant a finite line or sequence of 

elements in K and we say that the string is in K. 

Definition 3.3;  For a set {x.}._. C K,  let (x ,...,x ) be the 

string formed by  {x.} ._..  Then the length of the string is n. 

Definition 3.4; Let x and y be strings in K then the string 

xy is in K and is termed the concatenation of x and y, which is 

defined by (x ,...,x ,y.,...,y ) and is of length n + m. 

By an elementary formal system over an alphabet K,  (C),  is meant 

the following set of items (l)-(5). 

(1) The alphabet K. 

(2) An alphabet of ssrmbols,  V, the variables. 

(3) An alphabet of symbols, P, the predicates; each of finite 

degree. 

(4) A pair of symbols,  (->■, ,) called implication and 

punctuation. 
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(5)      A finite sequence,     A^,...,A^    of wffs.   termed the axioms of 

(C).     A wff.   of     (Z)    is an expression of  the  form    P    t^,...,t^    for 

t-,,..,t      terms,   or    F^  ->• F„ '.. .  ^ F      where each    F.     has  the  form 
I'm 12 n 3 

Pt-,,...,tjjj. 

We let K denote the set of all finite strings in K and let the 

term attributes denote a  set in    K    or a member of    P. 

Turning now the framework of Kramer  [1974], we now consider whether 

or not a rational choice function,   in the sense of Richter,  admits of a 

constructive  representation within a  formal  system  that we  shall 

interpret by finite automata. 

Consider a computing device that has k components, each of which 

can obtain m states, where m and k are finite integers. Let the 

description of  the  machine's computing process be given by  the  following: 

MA = <s,t,e(s),cl;(t),  m =  {l,0,-l}> 

The machine can be viewed as a kind of scanning device that looks at 

symbols on a tape and then signifies an output. The description, MA, 

for Mealy automaton (cf. Starke [1972] Ch. l), provides the following 

kind of rule: If in state s, and if the input symbol t is scanned, 

then go to the state 9(s), and signify the output 4^(t), and then 

move the input tape either right one space, -1; left one space, 1; or 

leave the tape where it is, 0. 
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Diagramatlcally, we can visualize MA as; 

1 0 
♦ ♦ -^   INPUT   ♦ 

-1 

t ""■"" 

) 
MA                  ^ 

♦ ♦ •♦ 

8 *(t) 

OUTPUT 

Let there be  two finite  languages  (not necessarily distinct)    L^ 

and    LQ    corresponding to an input language,  and an output language, 

respectively,    Lj    contains distinguished elements     {A,#}     that are used 

to indicate when distinguished segments of the input tape are begun and 

terminated.     In the  language    LQ    there is a  symbol    A    to indicate the 

null output.     In the manner of the above  definitions,  we may construct 

on each language  the elementary formal  system    ?(L  )    and    C(L  ).    One 

can then view the input tape as comprised of strings of wff.s in 

C[L  J,    while the output tape can be viewed as strings of wff.s in 

C(L  J.     It is  then permissible  to view  the automaton    MA    as a  composite 

formal system with components    C(L  ]    and    ?(L-)    and    4*    a rule of 

derivation. 

Consider now  the quotient space    X/~,     of indifference  classes  of a 

set of infinite alternatives upon which a complete pre-order    >    is 

X/~ 
defined.     Select then from    2 the class of all finite sets,  and call 
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it    IF.    Let us nake the assumption that    X/~    is denumerably infinite. 

If we assume  that any finite  set in    IF    has a well-formed representa- 

tion as a  string in    ?(L  ),     then from the  denumerability of    IF,  we  may 

form  the  input tape    T(IF)     that encodes  the  members  of    IF   as wff.s  in 

Denote  the totality of states for machine    MA    as    S.    Then 

HSU  = k      and is finite,   for    k    the number of components in    MA.    For a 

given string    x    on    T(IF),   the  function: 

T    = S X   {-1,1}  -»■  [S X   {-1,1}]     {0} 

specifies  the   transition rule  of  the  machine    MA    with respect to    x. 

For  the  pair,     (s,-l),   the  machine  is  in state    s,     at the  right most 

symbol  of    x.     If  the machine  runs  the  string    x    to  the  right and goes 

to state    9(s)  = s',     then set the value of the  function 

X^(s,-1)  =  (e(s),-l). 

One  sees readily  that the  total number of such functions  for  strings 

on    T(IF)     is    Q  =  (2k'" +  l)^*^    =  I!R(T)II "^^^^" ,     for    RCT)  =    the  range 

of    1:    and    D(T;)  = the  domain of    u.     Then,   the  sets     {T       }._.     give a 
X. 
1 

partition of T(IF) such that if x, y e T   ,  then x = x , i.e., 
X. 
1 

each T    is an equivalence class of strings that generate the same 
X. 
1 

transition function,  T 
i 

Before proceeding, we need to formalize precisely what is means for 

a Mealy automaton to realize a function. 
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Deflnition 3.5;  Allow f:  I ->• B to be a partial function defined 

on aribitrary sets I and B.  A Mealy automaton given as 

MA = <s,t,6(s),(|j(t), m = {1,0,-1}> is said to realize f on T if and 

only if: 

(a) for every i E D(f) — I there is a unique wff. in ^(L^) 

that formally represents i. 

(b) for every b e R(f) _ B for which there is an i e D(f) S I 

such that f(i) = b, there is a unique wff. in ?(Lf^)  that 

formally represents b. 

(c)  if t is the wff. in S^(L.)  that formally represents an 

i  e D(f)   CI,     then    <^(t)     is  the unique wff.   in    ^(LQ)     that 

formally represents  that    b e R(f) C B    for which    f(i)   = b. 

The  following is Kramer's  impossibility result. 

Theorem 3.1:     Let    X/~    be  denumerably  infinite and  let    >    be a 

complete pre-order on    X    that rationalizes  the choice  function 

('   (A)   =  {X £ A:     V y £  A[X > y]}     for every    A e IF.     Then no Mealy 

automaton of  the  form:     MA = <S,6(s),4'(t),  m  =  {l,0,-l}>    can realize 

/     on    IF. 

Proof; Suppose MA realized the choice function Lj     when A e F, 

then A would be encoded by a string x. ... x  in tyl^S]    and appear In i 

on    T(IF),   the  input tape.     Then we  require  that    (p(x.   ...   x  }     be a 
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wff. in C(L ). Clearly, the nature > requires that if x *  x  in 

5(L^)  then (^(x^) * <\>[x^)     in ^i\)- 

It can be demonstrated that for an input tape segment x^ ... x 

such that  x. e T   ,  if the machine accepts the segment scanning to 
X. 
1 

the right and printing 'I'lx. ... x J, then 

Ln(cp(x  ... X )) = I    f (x ) 

where    Ln(4))     is the  length of the output string    4'(x.   ...   x  )    and each 

of the functions are  such that    f.:    T        # to.     (cf.   Kramer  [1974]  p. 
J   x^ 

48-49)  Since the cardinality of inputs on T(IF) at least one member of 

t'^-r  J,-_-i» "^T  »  "fust contain infinitely many substrings, representing 
X. XQ ^/ 

distinct members  of    IF  _: 2       .     The  set    P =  {x..,x-„,x„,,...,x_   ,...} 
01     02    03 On 

can then be  formed in terms  of distinguished singletons,   one  each from 

the  members of    T . 

^0 

One  sees readily that all sets of the  form    {a.}u{a.}    or 

{a  } U  {a.}     must yield output strings  of  identical  length,  when 

represented as    x„.x_,.     or    x^.x.,.     in    ^(L_),     i.e. Oi  Oj Oj  Oi I 

Ln(4»(xQ  ,x     ))  = Lnfc^fx     ,x     )).     Clearly,   for distinct    a.,a.   e X/~, 

1/ either    a.  > a.     or    a.   > a. —: ,  and if    A =  (a  } U   (a  }.     then,   we have 
^\ Ji i^j ii 

(A)   = a^.     Then  it follows  that    LN((|J(X    x     ))   = Ln(4)(x     ,x     ))  = W, 
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where    W = Ln[<ii[x     ))     or    Ln[<\>[x    ))     depending on whether    a    > a.    or 

a.  > a,    respectively. 

However,   the  output alphabet is  finite  for    C(L  J,     say of 

cardinality    n.     Then the number of distinct strings in    ^(^^n)    of 

length    W    is bounded sharply by    (n)   . 

Then for    q     sufficiently  large,   say    q  >   (n)   ,     if    i   ,     j     > q, 

then if    XQ^^,.    and    ^QA*    represent    a        and    a .^    respectively,   since 

both    i      and     j      are  in excess of    q,     Ln(4'(z       ))  = Ln(c|j(x       ))     must 

imply  that    (^(x       )   = ^'(x   ^^),     and  therefore  if    MA    were  to realize 

r (A)     for    A  =   {a^^}     or     {ot^^}, (^  Ha^^,})   =    (^ii'^^J)-     But,   as 

^n-M. * x_.„    only if    (^ .^ * "^.j-j    by the preference structure,  no common 

choice  is possible. D 

We will now  obtain Theorem 3.1  as a corollary  to Theorem 2.2. 

Theorem 3.2;     Theorem 2.2  implies Theorem 3.1. 

Proof!     We  give  proof in stages. 

First,  by means of an admissible  coding,   the alphabet and  the wff.s 

of an elementary formal  system    (5)    can be arithmetized by means of a 

2/ Gbdel numbering .    By an admissible coding is simply meant as an 

injection    a:     K -> o),     and any element of    K    is said to be  coded by 

a.     Under  the  simplifying assumption that for    MA    the  input and output 

languages are  identical,  and thus  that     (^)   = 5(L  )  = CC^Q).     Inputs     t, 

and output    'l>(t)     of  the Mealy automaton become  strings  of elements  of 

w    by way of    a(t)    and    a((^{t))',     where  if    t    (or    <Jj(t))     is a  string 

of     (I)     of  the  form    x>,   ...   x^,   then    a(t)     (or    a(i\>(t))     is a  string 
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of  the form    a(x.J...a(x  )     comprised of elements of    w.     Taking now  the 
1 n 

strings  of     (Z)    as wff.s  the occurrences  of  "wff.   in    !;(L  )"    or  "wff. 

in    ^(L^)",     may be  replaced by  "a  set of elements  in    w"    by means  of 

the  coding    a.     The  strings  of    cj    generated  thus by    a    may further be 

reduced to elements of    w    by the mapping    P:    OC{K)  ■* oo    where 

n-1    ct(x.   .) 

set of    n    initial primes. 

n    P.     '^ for    t    of  the  form    x^   ...   x^,     and     {P-,...,P     .}     the 
._„    j 1 n' I  0'       '  n-v 

Second,  if we are given a partial  function    f:     K ^ K,    by means of 

the  mapping    Y  = Poa,     we  code    f    by means  of a  function    f:     u) ->■ w 

such that    f    maps the code of elements in    K '^ D(f)     to the code of 

elements in    R(f)  = K    under    y.    Tn explicit terms,  we may take    f    to 

be  given by 

-1 
f  = YofoY 

Third,   the  definitions  of effectively computable  function derived 

from Church's Thesis and the equivalences for partial  functions with 

domain  in    K    and range     K    by way of stipulating that the  partial 

fiinction    f:     K -> K    is  effectively computable  if and only  if  the  func- 

tion    f:  CO ->■ CO    is effectively comptable  in  terms  of one  of  the 

equivalences.     In particular,     f:     K -> K    is recursive  if and only if 

f:IN -> IM    is  recursive.     Similarly,   it follows  that a  set    A-   K    is a 

recursive attribute  if and only  if  the  characteristic  function  of 

O^(A.),     Xj^fA)    is a  recursive function.    Since,   therefore,  any string in 
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K    is finite,   the wff.s of    (?)    are recursive attributes  from the  fact 

that any  finite  set of elements of    w    is  recursive. 

Finally,   the need is to show that a choice  function that is 

rationalized by a complete pre-order defined on    X/~    is  realized on    IF 

by a Mealy automaton only  if the numerical  representation of  the  choice 

function under  the  codings induced by    a    and    Y    is recursively realiz- 

able.     Assume   then  that    /.    on    IF    is realized by some Mealy auto- 

maton.     Then  from the  fact that each distinct finite  set of    X/~    is 

given a  representation  in    (C)    as a unique wff.,  and if    t    is a wff. 

of     (C)     then       o:(t)     is a recursive   subset of    w,     and  distinct 

enumeration of the members of    IF    by way of their representations in 

(^)    becomes an enumeration of recursive subsets of    w    under the coding 

a.     If we next allow    a(X/~)    and    (X(IF)     to denote  the  image  in    o) 

under    a    of wff.s  in     (C)    representing elements  of    X/~    and    IF, 

<a(x/~),  a(lF)>    is a recursive  sub-space of alternatives,   for suitable 

3/ representations of    X^-' ,   of a recursive metric space.    Further,   if    t    is 

a wff.   of    (Z)    that represents an element of    IF,   then    (I'Ct)    is the 

unique wff.   of    (5)     that represents the image of that element under the 

choice  function   /      .     Then,   since  for any    A e IF,   /  (A) ^  A,   it 

follows  that    a((\)(t))     must also be  recursive  from the  fact that any 

A e  IF    is  finite and    i\>(t)     is a wff.   of a  subset of    A.     Then  it 

follows  that if    F.  e  IF    for all  jew,     for the  following enumerated 

pairs under the coding    a,    we obtain the  fact that 
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and  the  rest of  the argument  is  clear  from  the  following. 

Proposition 3.3;     Let    X/~    be  denumerably  infinite and  let    >    be a 

complete pre-order on    X    that rationalizes the choice  function 

(A)   =  {x e A:     Vy e  A[X  >  y]}     for every    A  e IF.     Then  if   /^     is 

realized by a Mealy automaton of  the  form    MA  = <S,9(s) ,(|j(t), 

m  =  {1,0,-1}>,     there  exists a Turing machine    T such that under  the 
M 

coding Y = Poa,  Tw  computes the values of Y( ((A))  from Y(A)  for 

all A e IF. 

Proof! Since the mapping a and P are both injective, if MA 

realizes the choice function /  on IF then under the coding 
V }, 

Y  = Poa,     MA also realizes  the  function /     :     o) -> w    on 

Y(IF)  =  {n e  W:  4 A e  IF [Y(A)   = n]},     where   /      = yo Z' Y~  •     This  is 

merely the result of renaming the wff.s in    (C)     that represent the 

member of    IF    and  the  members  of f     (IF)   =    {/   (A):     4  A e  IF}     by way 

of arithmetization. 

Next,   we  represent elements  of    co    on  the encoded  input tape  of 

MA    by  finite  strings  of    1's  so  that if    x E w,     x    is a  finite 

sequence  of  1's  representing    x    on  the  input tape  of    MA.     Observe  that 

if    MA    realizes    f on    Y(IF),   then by Theorem  1  of  Appendix  2 of 

Ritchie   [1963],   for every    A e  IF,   there  exists a   finite  set of 

instantaneous  descriptions of    MA,     {D   ,...,D  }     where  for 

j   = 1,...,n    each    D.   = (       x,s,p),     for    s e S    and    p    the  number of 

the  square  of  the  input tape  that corresponds  to  the  rightmost 1   of 
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X  for X £ (jJ,  and such that D = (Y(A)  , s ,m) 
I    I ' 0 

A. 

D    =  (   /^(A),   f,Jl)    where     SQ,     f £  S    denote  the  initial and final 

states of    MA    respectively,  and    m, J!. £  to    such that 
'    ^        I I I I ::: 1 i > 

1 = m + Ln(/^(A))  <   HSII   + Ln(Y(A)), for    LNC/'CA))    and    Ln(Y(A)) 
[^                    I— 1 \^ 

respective  lengths  of   /^(A)    and    Y(A).     Furthermore,   for     j  > 1,   each 

instantaneous description    D-     is  obtained from its  predecessor by means 

of the following scheme; 

D. •* D.   .     if and only if either 

(a) D.   =   (   X     ,   s,p)     and    D =  (   y     ,   s',   p+l) 

if    1   <  j   < n    and    m <  p < Jl-1, 

or 

(b) ^j  "  ^  "     .s,Jl-l)    and    D^^^   = (/'(A),f,Jl) 

if    j  = n - 1 

The  proposition now  follows by  setting values of a Turing machine 

T,,  :     S X   {0,1}  -»-  {0,1}   X   {L,R}   X S,     the  set of states of    MA,   in 
M 

correspondence to the successive derivations of the instantaneous 

descriptions  iD. ,...,T) }.   D 
1     n 

By the proposition, if a Mealy automaton realized the choice 

function  / on IF, then under the coding Y» 

<Y(^J)Y(/^ (F.)) >} .   would have to be a subset of w x ^ of degree 
J   y  0    JEW 

less than 0'  by way of the equivalence between functions computable by 
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Turing machines and recursive functions. However, by Theorem 2.2 this 

cannot occur, and the proof is finished.   n 
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APPENDIX I 

In this appendix we provide a brief description of Turing machines, 

and demonstrate that, within the framework of the descriptions, finite 

automata can be viewed as a special instance of Turing machines. 

(A)  Turing Machines 

Definition 1!  By an alphabet A, we will mean a finite set of 

elements called symbols which includes a distinguished symbol B, termed 

the blank symbol. 

Definition 2;  A Turing machine Z over the alphabet A is a 

quadruple  (S,ra,SQ,f) when S is a finite set,  SQ and f are 

elements of S, and m:  A x (S - ff} ■> A x S x {l,-1,0}. The set 3 

is called the set of states of Z, SQ the initial state, f the final 

state, and m the transition function. 

Definition 3; For a given Turing machine Z = (S,m,So.f) over an 

alphabet A, an instantaneous description of Z is a triplet  (t,s,p) 

for t a finite sequence of elements of A; p positive integer not 

greater than the length of t, and s as an element of S.  t is 

called the tape in Z,  p the number of the scanned square, and s the 

state of Z. 

Definition A'- For a given Turing machine A = (s,m,So»f) over an 

alphabet A, the yield operation ■*, on instantaneous descriptions of 

Z is defined as follows X(Z) ^ Y(z)  if and only if at least one of 
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the following obtains where    aj^    and    b^^    are in    A    for all positive 

integers     1: 

1. X =  (a-|.. .a^,s,p)    and    Y = (b^...bj^,s  ,p  )    with    a^ = b.    for all 

j 5^ p,     m(a   ,s)  =  (b   ,8   ,p   ,-p)    and either    p < n    or    p = p'   = n. 

a      t 
2. X =  (a-,.. .a^_^aP,s,n)    and    Y =  (a....a     .b   ,s   ,n+1)    where 

m(a   ,s)  =  (b   ,s',1). n n 

3. X =  (a-,.. .a^_^aj^,s,n)    and    Y =  (a^ .. .a^_>|b^,s   ,n-l)    where 

m(a   ,s)   =   (b   ,s,-l)    and    h    * ?. 
n n n 

4. X = (a-,.. .a^_-|a^,s,n)    and    Y = (a.,.. .a^_^ ,s   ,n-l)    where 

m(a^,s)  =   (P,s   ,-1). 

Definition  5:     A computation by a Turing machine     Z    over an alpha- 

bet    A    is a  finite  sequence    X^,...,X      of  ins-feintaneous  descriptions 

of    A    such  that for all    i  = 1,...,q-1,     X.(Z)  -> X.     (z)    and for a 

finite  sequence  of elements    t    of    A    and some  integer    p,   X    =  (t,f,p), 

We  then  say  that    X^     begins  the  computation and  that    X      is  the 

resultant of    X-|. 

Definition 6:     Given a  subset    D    of    IF =     P   A>^,   then    IF    the  set  .  j£^ 

of all  finite  sequences  of elements of  the alphabet    A,   the  fionction 

$ = D -> IF    is  said  to be  computed by  the Turing machine     Z    over the 

alphabet    A    if  the  following conditions hold.     For each    t e D    there 

is a computation by    Z    beginning with    (t,s   ,l)     such that the 

resultant of     (t,s   ,l)     is     ($(t),f.p)     for some  integer    p. 
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Definltion 7:     Let    IFQ    denote      '^      {0,1}"^,     the  collection of all 
JeiN 

finite  sequences  of elements  from the  two element set     10,1}.     The 

Turing machine  over  the alphabet     {o,1,p}     is  said  to  compute  the 

function    f    from    n-tuples of non-negative  integers  to non-negative 

integers if it computes  the function    f:     D    > IFQ    when 

1. DQ    is  the  set of  strings  of  the  form: 

n^Pn^P...pn      for    (n^,...,n  )   eDom(f). 
1     2 n In 

2. ffn^B...Bn 1  is defined as ffn" ^^ ^" • ,n') when n for n £ IF 
^  1 n 1 n 

denotes   the   binary  encoding  of   the   natural   number     n. 

(B)     Finite  Automata 

Definition 8;     For a  given Turing machine  over an alphabet    A,   the 

IF-yield operation    ->•     between instantaneous descriptions of    Z    is 
IF 

defined as follows:  X(z) ^ Y(Z) if and only if at least one of the 
IF 

following conditions obtains where a^ and b^ are in A for a 

positive integer i. 

1. X = (aj^a^_<,...a^aQ,s,p) and Y = (b^b^_^.. .b^bg.s ,p+l)  for 

p < n,  b. = a-  for all  j '^ P»  and also that m(a ,sj = (b ,f,-1j. 

2. X = (aj^aj^_-,...a^aQ,s,p) and Y = (b^b^_.,.. .b^a^.f ,n+1) with 

m(a^,s) = (b^,f,-l). 
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3.  X (aj^a^^.,...a^aQ,s,n) and Y = (pb^a^_^.. .a^a^.s ,n+l) wi th 

mfa ,sl = (b ,s ,-1J and s ^ f. 
n       n 

Definition 9; An IF computation by a Turing machine Z over the 

alphabet A is a finite sequence X^...X  of instantaneous descrip- 

tions of Z such that for all i = 1,...,q-1 X(Z) ■*   Y(Z) and 
IF 

X = (t,SQ,0) and S = [t ,f,-!!.(t JJ where t and t  and finite 

sequences of elements in A and l(t') denotes the length of the 

sequence  t'.  We say that X^  begins the computation and that X  is 

the resultant of X^, 

Definition 101  For a fixed subset D of IF = '-' A^, the function 
JeiN 

$:  D ->■ IF is said to be computed by the Turing machine Z viewed as a 

finite automaton over A if the following conditions hold.  For each 

t e D there is an IF-computation by Z beginning with (t,s ,0J and 

the resultant of (t,SQ,o) is ($(t) ,f .S-Ct)). 

A computation by a finite state machine always begins on the right- 

most square of the input tape and proceeds by moving one square to the 

left at each stage of its computation.  The tape of the finite state 

machine can be extended indefinitely, however unlike the Turing machine, 

finite state machines cannot add or take away blank squares.  The 

ability to "print" and "erase" is the major distinction between the two 

forms as can be seen from a comparison of the conditions that define 

their respective computation processes. 

A further difference between the two forms of Turing machine is that 

the class of functions computable by a finite state machine is 
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restricted by the length of input tapes.    The result below taken from 

the  paper by Ritchie  demonstrates  this  restriction,  which was actually 

employed in the result of Kramer  [1974]• 

Theorem  (Ritchie  op.   cit.  p.   I64):     If    ^    is a  function computed by 

a finite automaton    Z    with    K    non-final states then,   for each 

argument    t    is  the  domain of    $,     the  length    $(t)     is at most    K+Jl(t) 

where    ^(t)     is the  length of the tape    t. 

Proof"    Since     A    is finite,  after    Z    has  read all  of    t    it 

proceeds  to move  left reading blank  squares.     However,   if  it,   (z), 

enters the same  state  twice it cycles and will  then fall into an 

infinite  loop.     Since    K    is  the number of distinct non-final  states 

of    A    and    t    is  in the  domain of    $,   Z    must enter  the  final  state 

f    within    K    steps after reading the last symbol of    t.    Therefore,   the 

length of    ^(t)     is at most    K    plus  the  length of    t. Q.E.D. 

A discussion of  further  limitations of finite  state machines  can be 

found in  the article  by C.C.   Elgot,   "Decision Problems of Finite 

Automata Design and Related Arithmetics," Transactions AMS,  98,   [1961] 

pp.  21-51. 

It should further be  observed  that  the  comparative  strength in 

computing capability obtained by Turing machines,   relative  to thiat of 

finite automata,   serves  to distinguish our approach from the works  of 

Futio and Gottinger,  which,   like Kramer's approach,   consider  the  item of 

rationality  in decision making for social  decision rules as represent- 

able by finite state machines.    The issue of complexity in their 
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approach is defined in terms of Krohn-Rhodes decomposition theory. 

Within our framework of Turing computability, obtianed by means of 

Church's Thesis, complexity takes the form of degrees of unsolvability. 
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APPENDIX II 

We present in this appendix a brief summary of some of the 

important structural features of the recursive metric space 

M(IR) = <(IN(R)~IN(R))» 0R>*  '^he terminology is that of Moschovakis 

[1965], wherein can be found proofs of the propositions. 

Definition 1:  A sequence  {a.}     for each a. e M(IR)  is said 
——————— D d^'Di J 

to be recursive if there is a general recursive function f:  IN ->■ IN 

such that for all  j e IN, f(j) e IN(IR) and a.[f(a)], where  [f(j)] 

is an equivalence class under '^IN(R)«  The Godel number of f, n(f) is 

said to index the sequence. 

Definition 2;  A sequence  {« •} ^c.   ^or  each a e M(IR)  is said 

to be recursively Cauchy if there is a general recursive function g: 

IN->■ IN such that for all  j,  K e IN C^ (a g(.)»a g(j)+K^ ^ ^''^'    "^^^ 

function 9     is called a Cauchy criterion for the sequence  {a.}^p_, 

and the Godel number of 3 ,  n{ g)    is termed a criterion index for the 

sequence. 

A typical property of IR that one would wish M(IR) to preserve 

in recursive analogue is that it is complete. We state the fact that 

M(IR)  has such a property in terms of the following. 

Property A;  A recusive metric space is said to have Property A is 

there is a partial recursive function h:  IN x IN ->■ IN called a 

convergence function, such that if n(F)  is an index of a recursive 

sequence with a criterion index n( g), and if there is an a such that 
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a = lim a(j),  then h(n(f),n(g )) is well defined as an element of the 
•j->co 

notation  for  the metric  space and    a  =  [h(n(f),n(g ))]. 

Definition 3;     If a recursive metric space satisfies Property A and 

if every recursively Cauchy sequence has a  limit,   it is said to be 

recursively  complete. 

Proposition 1:    The recursive metric space    M(IR)    is recursively 

complete. 

Another feature  of    IR    that one would desire    M(IR)    to possess is 

that    IR    is  separable.     That    M(IR)     is  in fact separable  can be 

verified immediately by  the constructions of    QM(IR)    from    R-indices 

of  the  rational numbers which by Proposition 3 are  recursive  real 

numbers.     Further,   since  the  rationals  can be  made  isomorphic  to    IN, 

they  form a  recursively enumerable  subset of    M(IR). 

Definition A'     A recursive  metric  space  is  recursively  separable  if 

there  is a  recursively enumerable  subset of  the  space  that is dense. 

Proposition 2;    M(IR)    is recursively separable. 

Definition 3;     A  listable  predicate  of n-tuples of R-indices  in 

M(IR)     is a predicate    P:(IN(R))'^ ■*■  {l,o}     for which there  is a partial 

recursive  function    f:     BP ■*  {l,o}     for which it is  true  that 

f(n  ,...,n  )   = 1     if and only  if    P(n(f  ),...,n(f  ))  = 1. 
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Proposltlon 3:  For a fixed a E M(IR) and for any K e IN,  the 

open sphere, s(a ,KJ with center a.      and radius 2~      defined as 

' s(a^,K) = {p e M(IR): V^[a^,^]  <  2"^} 

is a listable subset of M(IR). 

We next obtain by way of Proposition 3 the fact that M(IR)  is 

connected in the natural topology on M(IR) induced by the metric V^ 

with the spheres 3[o'p,,KJ as a basis. 

Proposition 4^ M(IR)  is connected in the natural topology. 

Proof;  The open sets in the natural topology on M(IR) are taken 

as the recursive union of spheres, i.e., an open set has the form: 

0=  ^  S([f(j)],  (j)) 
j,f(j) 

for f:  IR > IN and Q :     IN ^ IN partial recursive.  The functions f 

and 9     are  said to index 0. 

By Theorem 2 of Moschovakis [1965], one observes that if 0 is an 

open set in a recursive metric space satisfying Property A, then its 

complement is recursively closed, i.e., contains the recursive limits of 

its recursive sequences.  In particular, this is true of M(IR)  since 

it has Property A.  To see that M(IR)  is connected, we show that no 

proper subset of M(IR)  is both recursively open and recursively closed. 

Let IF be a proper recursively closed subset of M(IR). We show 

that IF is not recursively open.  Choose a ^ IF and a    ^ IF which 
x y 
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can be done since 0 + IF *  M(IR). Assume that a > a  in the order 
X   y 

on M(IR) induced by the order on IR and define a = sup{a e IF: 

a^ < a  }. Then it is true that a > a > a . Then a e IF, because 
t   x' X   z   y        z    ' 

IF is recursively closed and for any s(a ,K), (s(a ,K)niF) *  0.  But 
z        z 

if a e IF, then a > a , but then any s( (a - a )/a ,K) with K 
z X   z X   z  2 

sufficiently large is such that it is true that (s((a = a )/a^,K] nw)  = 0 

and since the choice of a  is arbitrary, a  cannot be interior to 
X z 

IF and so IF cannot be recursively open. Q.E.D. 

Finally we state two results that risfer to the fact that M(IR) is 

a Baire space in the sense that it is not the recursive union of 

recursively closed, nowhere dense sets of which in the classical setting 

yields that every denumerable subset of a perfect metric space is of the 

first category; a metric space being perfect if it has no isolated point 

which is true of M(IR). 

Proposition 5;  Every recursively enumerable subset of a perfect 

recursive metric space, and therefore of M(IR), is of the first 

category. 

Proposition 6: The complement of a recursively enumerable subset of 

a recursively separable, recursively complete, perfect recursive metric 

space, and therefore of M(IR), is recursively dense. 

From Proposition 4 one sees that the recursive closure of the 

subspace QM(IR) is in fact M(IR)  from Proposition 2. 
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FOOTNOTES 

1/  Of course, by a. > a. we mean that for some x, y e X s.t. 
— a ~ 1 

X e a . and y e a > y. 

2/  Two of the most frequently employed Godel numberings are the 
~   lexicographic and dyadic,  (cf. Rogers [196?]) 

3/  I.e.  let X be the set of "rationals" in [0,1]" form some 

n > 0, under a suitable coding into M(lFr). 
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